Social and Policy Issues in Nanotechnology

Erik Fisher

Center for Nanotechnology in Society at Arizona State University

5th CINT User's Workshop Albuquerque, NM January 16-17, 2007

Outline

- Political Context
 - Two Trends
- Societal Issues
 - EHS
- Governance Charge
 - Integration
- Discussion:

Politics of Competitiveness

- Next Industrial Revolution
 - \$1 Trillion market by 2015
 - \$1 Billion US Federal
 - Largest initiative since Apollo
- Global Competition
 - 30 national programs
 - US lacks the "commanding lead" of previous megatrends (Roco, 2003)
 - "US is being outpaced by foreign competition" (Marty, 2003)
- Policy context
 - High stakes, expectations and visibility

Politics of Acceptance

- Role of public perceptions
 - Public funding
 - Regulatory environment
 - Commercial adoption
- Potential for public "backlash"
 - GM agriculture, Nuclear Power
 - National Academy, Royal Society, Swiss Re
- Early indicators
 - Active NGOs, authors, celebs
 - ETC, Greenpeace, T.H.R.O.N.G., Bill Joy, Prince Charles, Michael Crichton
 - Public opinion surveys
 - Lack of trust correlated to heightened risk perception (Cobb & Macoubrie, 2004)
 - Sociological "fear factors"
 - Low scores for nano

Perceptual fear factors

- Involuntary
 - Consumers likely to use products containing nanomaterials without knowing it
- Arises from unfamiliar or novel sources
 - Novelty is a standard claim, public lacks technical understanding
- Results from man-made sources
 - Engineered nanoparticles
- Causes hidden and irreversible damage
 - Could accumulate in the body or environment, unbeknownst to consumers and agencies, leading to chronic effects
- Poorly understood by science or responsible agencies
 - Both researchers and regulators face great uncertainty
- Described in contradictory statements from responsible sources
 - Utopian and apocolyptic representations of nano abound

(Sources: Nordan, 2005; Bennett & Calman, 1999)

Societal Issues

- EHS (Environmental, Health, Safety)
 - Toxicology data
 - Regulations
 - Workplace practices
- Other ethical aspects
 - Privacy, identity, misuse, disruption
- Governance
 - Integrate social research (US Congress)
 - Address "real and perceptual risks" (Nordan, 2005)

- Greater surface areas per mass compared to larger-sized particles of same chemistry
 - Nanoparticles more biologically, chemically active
 - Can be positive and/or negative
- Evidence points towards possible EHS risks of some nanomaterials (Chen et al., 2005; Jia et al., 2005; Oberdorster et al., 2002, 2004)

Nanomaterials potential EHS diffusion pathways

- EHS impacts dependent on particle properties
- Changes with agglomeration
- Environmental fate of nanomaterials unknown over product lifetime
 - Air
 - Soil
 - Water
 - Plants

Dept. of Environment, Food, and Rural Affairs, UK, 2006 (adapted from Natl. Institute Resources and Environment, Japan)

Limited Baselines for Comparison

- Incidental ultrafine particles
 - Heterogeneous
 - Primarily carbonaceous
 - High levels of agglomeration
 - Correlated to mortality rates (SwissRe, 2003)

- Engineered nanoparticles
 - Highly structured, uniform in size
 - Reactive surface chemistries
 - May remain mobile longer (EPA, 2005)
 - May increase in toxicity

Biological Response to Nanomaterials

Mouse microglial cell defends itself from titanium dioxide nanoparticles (Veronesi et al, 2006).

Ability of some particles to cross the blood-brain barrier and to impact the central nervous system (Oberdorster, 2002)

Rat lung cell attempts to ingest carbon nanotube (Stone & Donaldson, 2006).

TiO2 Induced rat lung cell lesions (Chen et al, 2006).

Federal Mandates

National Nanotechnology Initiative

Responsible Development of Nanotechnology

21st Century Nanotechnology Research and Development Act

 insofar as possible, integrating research on societal, ethical, and environmental concerns with nanotechnology research and development

- What is CINT already doing in these areas?
- What could be done better?

- Education and preparation?
- Communication and outreach?
- Research practices?
- Management policies?
- Integration of social and scientific issues
 - Criteria
 - Opportunities
 - Challenges

Workplace Safety

Issues

- Possible higher combustibility of some common particles at nanoscale compared to micronscale
- Uncertain toxicology data, understanding, regulation
- Uncertainty whether protective equipment is adequate

Federal Agencies

- FDA, EPA, NIOSH
- Communications
- Volunteer reporting

Guidelines

- Factors that can increase potential exposure
 - Liquid media
 - Generating gas phase materials in nonenclosed systems
 - Nonstructured powders
 - Maintenance of equipment and processes
 - Cleaning of dust collection systems

Group	Date	Document
European Commission (EC)	June 2005	Nanosciences and nanotechnologies: An action plan for Europe 2005-2009
U.S. National Institute for Occupational Safety and Health (NIOSH)	September 2005	Strategic Plan for NIOSH Nanotechnology Research
Consortium of researchers	October 2005	Principles for Characterizing the Potential Human Health Effects from Exposure to Nanomaterials: Elements of a Screening Strategy
U.S. Environmental Protection Agency (EPA)	December 2005	External review draft of nanotechnology white paper
U.K. Department for Environment, Food and Rural Affairs (DEFRA)	December 2005	Characterizing the risks posed by engineered nanoparticles: A first UK Government research report
EC Scientific Committee on Emerging and Newly- Identified Health Risks	March 2006	Opinion on the appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies
Woodrow Wilson International Center for Scholars	July 2006	Nanotechnology: A Research Strategy for Addressing Risk